10 min readNgusa
Understanding RAG: Retrieval Augmented Generation Explained
RAG (Retrieval Augmented Generation) has become essential for building context-aware AI applications. Let me break down how it works and how to implement it effectively.
What is RAG?
RAG combines two powerful concepts:
- Retrieval - Finding relevant information from a knowledge base
- Generation - Using LLMs to create responses based on retrieved context
The RAG Pipeline
1. Document Processing
python
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
chunks = splitter.split_documents(documents)2. Embedding & Storage
python
from langchain.vectorstores import ChromaDB
from langchain.embeddings import OpenAIEmbeddings
vectorstore = ChromaDB.from_documents(
documents=chunks,
embedding=OpenAIEmbeddings()
)3. Retrieval & Generation
python
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=vectorstore.as_retriever(),
return_source_documents=True
)Best Practices
- Chunk Size Optimization - Balance context vs. specificity
- Hybrid Search - Combine semantic and keyword search
- Reranking - Improve relevance of retrieved documents
- Metadata Filtering - Add structured filters to queries
Common Use Cases
- Document Q&A systems
- Knowledge base assistants
- Customer support chatbots
- Research assistants
Conclusion
RAG bridges the gap between static LLMs and dynamic, up-to-date information, making it invaluable for production AI applications.