15 min readNgusa
Fine-tuning Large Language Models: A Practical Guide
Fine-tuning LLMs allows you to adapt powerful base models to your specific use case. Here's everything you need to know to get started.
Why Fine-tune?
Fine-tuning helps when you need:
- Domain-specific knowledge
- Custom tone or style
- Improved accuracy on specific tasks
- Cost reduction vs. prompt engineering
Fine-tuning Approaches
1. Full Fine-tuning
Updates all model parameters - expensive but most flexible.
2. LoRA (Low-Rank Adaptation)
Efficient method that adds trainable low-rank matrices:
python
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=16, # rank
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none"
)
model = get_peft_model(base_model, config)3. QLoRA (Quantized LoRA)
4-bit quantization + LoRA for maximum efficiency:
python
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config
)Dataset Preparation
Quality data is crucial:
python
from datasets import Dataset
data = {
"instruction": [...],
"input": [...],
"output": [...]
}
dataset = Dataset.from_dict(data)Training Process
python
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-4,
fp16=True,
logging_steps=10
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset
)
trainer.train()Best Practices
- Start Small - Use LoRA/QLoRA before full fine-tuning
- Quality > Quantity - 1000 high-quality examples beats 10000 poor ones
- Monitor Overfitting - Use validation sets
- Experiment with Hyperparameters - Learning rate, rank, epochs
Evaluation
Test your fine-tuned model:
- Perplexity scores
- Task-specific metrics
- Human evaluation
- A/B testing against base model
Conclusion
Fine-tuning LLMs has become accessible with techniques like LoRA and QLoRA. With the right data and approach, you can create highly specialized models efficiently.