Back to blog
15 min readNgusa

Fine-tuning Large Language Models: A Practical Guide

Fine-tuning LLMs allows you to adapt powerful base models to your specific use case. Here's everything you need to know to get started.

Why Fine-tune?

Fine-tuning helps when you need:

  • Domain-specific knowledge
  • Custom tone or style
  • Improved accuracy on specific tasks
  • Cost reduction vs. prompt engineering

Fine-tuning Approaches

1. Full Fine-tuning

Updates all model parameters - expensive but most flexible.

2. LoRA (Low-Rank Adaptation)

Efficient method that adds trainable low-rank matrices:

python
from peft import LoraConfig, get_peft_model

config = LoraConfig(
    r=16,  # rank
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],
    lora_dropout=0.05,
    bias="none"
)

model = get_peft_model(base_model, config)

3. QLoRA (Quantized LoRA)

4-bit quantization + LoRA for maximum efficiency:

python
from transformers import BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config
)

Dataset Preparation

Quality data is crucial:

python
from datasets import Dataset

data = {
    "instruction": [...],
    "input": [...],
    "output": [...]
}

dataset = Dataset.from_dict(data)

Training Process

python
from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    learning_rate=2e-4,
    fp16=True,
    logging_steps=10
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset
)

trainer.train()

Best Practices

  • Start Small - Use LoRA/QLoRA before full fine-tuning
  • Quality > Quantity - 1000 high-quality examples beats 10000 poor ones
  • Monitor Overfitting - Use validation sets
  • Experiment with Hyperparameters - Learning rate, rank, epochs

Evaluation

Test your fine-tuned model:

  • Perplexity scores
  • Task-specific metrics
  • Human evaluation
  • A/B testing against base model

Conclusion

Fine-tuning LLMs has become accessible with techniques like LoRA and QLoRA. With the right data and approach, you can create highly specialized models efficiently.

References & Further Reading

    Fine-tuning Large Language Models: A Practical Guide | Samwel Ngusa